Towards The Future of Crab Farming: The Application Of AI with Yolox And Yolov9 To Detect Crab Larvae
DOI:
https://doi.org/10.35585/inspir.v14i2.93Keywords:
Crab farming, Larvae detection, Deep learning AI, YOLOv9 model, Sustainable fisheriesAbstract
Crabs are a highly valued food source and a key export commodity for Indonesia, but farming them remains a challenge, particularly during the larval stage, where survival rates are critically low. This issue has contributed to the declining population of wild crabs. A crucial factor in improving survival rates is the accurate detection and counting of crab larvae. By determining the precise number of larvae, farmers can optimize feeding ratios, manage stocking densities to reduce cannibalism, maintain water quality, and improve cost efficiency through better resource management. Despite its importance, no affordable and precise tools currently exist for this purpose. This study aims to develop a cost-effective and accurate crab larvae detection and counting application using image processing powered by deep learning artificial intelligence (AI). Two models, You Only Look Once eXtreme (YOLOX) and YOLOv9, were evaluated for their performance. The YOLOX-S model struggled with accuracy in detecting larvae, whereas the YOLOv9 model demonstrated superior performance, achieving a mean Average Precision (mAP) of 0.85 at IoU=0.5 and successfully detecting 93% of crab larvae objects accurately. The findings of this research have significant implications for supporting Indonesia's blue economy and aligning with Sustainable Development Goals (SDGs), particularly in sustainable fisheries and aquaculture. By enabling a tech-driven approach to crab farming, this solution addresses the challenges of declining wild crab populations, improves food security, and promotes economic growth for fishers and farmers. These advancements contribute to the development of a sustainable crab farming ecosystem, ensuring long-term ecological and economic benefits.
Downloads
References
Aini, Q., Lutfiani, N., Kusumah, H., & Zahran, M. S. (2021). Deteksi dan Pengenalan Objek Dengan Model Machine Learning: Model Yolo. CESS (Journal of Computer Engineering, System and Science). https://api.semanticscholar.org/CorpusID:238813905
Amri, M. I., Tahir, R., Haris, A., Agusanty, H., & Saleh, M. S. (2024). Trends in Indonesia’s Fishery Commodity Exports. Torani Journal of Fisheries and Marine Science, 8(1), 44–62. https://doi.org/https://doi.org/10.35911/torani.v8i1.42086
Andayani, A., Sugama, K., Rusdi, I., Luhur, E. S., Sulaeman, S., Rasidi, R., & Koesharyani, I. (2022). Kajian Pengembangan Budidaya Kepiting Bakau (Scylla Spp) Di Indonesia. Jurnal Kebijakan Perikanan Indonesia. https://api.semanticscholar.org/CorpusID:258650883
Anwar, S. (2024). Pertumbuhan Populasi Dunia dan Tantangan Ekonomi Global. Kompasiana.Com. https://www.kompasiana.com/syaifulanwar2876/6649f5e5c57afb561802e5c2/pertumbuhan-populasi-dunia-dan-tantangan-ekonomi-global
Apriyanto, E., Hartono, D., Program Studi Pengelolaan Sumber Daya dan Lingkungan, M., Bengkulu, U., Program Studi Kehutanan Fakultas Pertanian, D., Program Studi Ilmu Kelautan, D., & Pertanian, F. (2018). Potensi Kepiting Bakau (Scylla Spp) Pada Ekosistem Mangrove Di Kota Bengkulu. Naturalis: Jurnal Penelitian Pengelolaan Sumberdaya Alam Dan Lingkungan, 7(1), 1–9. https://doi.org/10.31186/NATURALIS.7.1.9253
Arif, A. (2021). Masyarakat adat & kedaulatan pangan. Kepustakaan Populer Gramedia.
Avianto, I., Sulistiono, & Setyobudiandi, I. (2013). Karakteristik Habitat Dan Potensi Kepiting Bakau (Scylla Serrata, S.Transquaberica, And S.Olivacea) Di Hutan Mangrove Cibako, Sancang, Kabupaten Garut Jawa Barat, Indonesia. Jurnal Ilmu Perikanan Dan Sumberdaya Perairan. https://www.researchgate.net/publication/320347402_KARAKTERISTIK_HABITAT_DAN_POTENSI_KEPITING_BAKAU_Scylla_serrata_Stransquaberica_and_Solivacea_DI_HUTAN_MANGROVE_CIBAKO_SANCANG_KABUPATEN_GARUT_JAWA_BARAT_INDONESIA
Awalludin, E. A., Wan Muhammad, W. N. A., Arsad, T. N. T., & Wan Yussof, W. N. J. H. (2020). Fish Larvae Counting System Using Image Processing Techniques. Journal of Physics: Conference Series, 1529(5). https://doi.org/10.1088/1742-6596/1529/5/052040
C, D. H. (2020). An Overview of You Only Look Once: Unified, Real-Time Object Detection. International Journal for Research in Applied Science and Engineering Technology, 8, 607–609. https://api.semanticscholar.org/CorpusID:225763030
Cindi, N. T. (2024). Blue Economy: Proyeksi Strategis Penunjang Keberlanjutan Indonesia pada Aspek Ekosistem Laut dan Pesisir. LautSehat.ID. https://lautsehat.id/ekonomi-hijau/lulu_bayu/blue-economy-proyeksi-strategis-penunjang-keberlanjutan-indonesia-pada-aspek-ekosistem-laut-dan-pesisir/
Costa, C. S., Gonçalves, W. N., Zanoni, V. A. G., dos Santos de Arruda, M., de Araújo Carvalho, M., Nascimento, E., Marcato Junior, J., Diemer, O., & Pistori, H. (2023). Counting tilapia larvae using images captured by smartphones. Smart Agricultural Technology, 4(December 2022), 100160. https://doi.org/10.1016/j.atech.2022.100160
Dipura, G. P. A., Amanda, F., Firmansyah, M. R., Rizky, M. R., & Jamal, M. N. K. (2024). Teknologi Komputer Vision dalam Kamera Pengawas. Karimah Tauhid. https://api.semanticscholar.org/CorpusID:269619090
Elsera, M., Wisadirana, D., Kuswandoro, W. E., Chawa, A. F., Casiavera, C., & Oprasmani3, E. (2024). Dinamika Usaha Perikanan Masyarakat Suku Akit di Kepulauan Riau. Buletin Ilmiah Marina Sosial Ekonomi Kelautan Dan Perikanan. https://api.semanticscholar.org/CorpusID:271008024
Ge, Z., Liu, S., Wang, F., Li, Z., & Sun, J. (2021). YOLOX: Exceeding YOLO Series in 2021. 1–7.
Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70 / 30 or 80 / 20 Relation Between Training and Testing Sets : A Pedagogical. Departmental Technical Reports (CS), 1209, 1–6.
Keles, M. C., Salmanoglu, B., Guzel, M. S., Gursoy, B., & Bostanci, G. E. (2022). Evaluation of YOLO Models with Sliced Inference for Small Object Detection. 1–6.
KKP. (2024). Direktorat Jenderal Perikanan Budi Daya. Kkp.Go.Id. https://kkp.go.id/djpb/menteri-trenggono-ajak-sarjana-perikanan-kembangkan-budidaya-lima-komoditas-unggulan-ekspor-GvV7/detail.html
Li, X., Liu, R., Wang, Z., Zheng, G., Lv, J., Fan, L., Guo, Y., & Gao, Y. (2023). Automatic Penaeus Monodon Larvae Counting via Equal Keypoint Regression with Smartphones. Animals, 13(12). https://doi.org/10.3390/ani13122036
Luhur, E. S., Asnawi, A., Arthatiani, F. Y., & hajar Suryawati, S. (2020). Determinan Permintaan Ekspor Kepiting/Rajungan Olahan Indonesia Ke Amerika Serikat: Pendekatan Error Correction Model. Jurnal Kebijakan Sosial Ekonomi Kelautan Dan Perikanan. https://api.semanticscholar.org/CorpusID:234440326
Nalury, B. (2024). Blue Economy: Mengoptimalkan Potensi Laut untuk Kemajuan Ekonomi Indonesia. Kompasiana.Com. https://www.kompasiana.com/nadyatcindi2866/67039851ed6415229b48dd42/blue-economy-mengoptimalkan-potensi-laut-untuk-kemajuan-ekonomi-indonesia
Nikawanti, G. (2021). Ecoliteracy : Membangun Ketahanan Pangan dari Kekayaan Maritim Indonesia. Jurnal Kemaritiman: Indonesian Journal of Maritime. https://api.semanticscholar.org/CorpusID:266053126
Pendi, P., Irawan, D. C., Febiola, D., Putri, E. D., Aprilia, F. T., Somat, A., Pratama, S., Novella, S., Siska, S., Firani, Y., & Wiati, I. T. (2023). Pemberdayaan Masyarakat Berbasis Potensi Lokal dengan Olahan Kepiting di Dusun Lubuk Laut. Jurnal Pelayanan Dan Pengabdian Masyarakat (Pamas). https://api.semanticscholar.org/CorpusID:258522624
Putri, I. I. R. (2021). Sederet Upaya KKP Dukung Budi Daya Kepiting di Indonesia. Finance.Detik.Com. https://finance.detik.com/berita-ekonomi-bisnis/d-5824725/sederet-upaya-kkp-dukung-budi-daya-kepiting-di-indonesia
R Ravi., M. M. (2012). Survival Rate and Development Period of the Larvae of Survival Rate and Development Period of the Larvae of Portunus. Fisheries and Aquaculture Journal, 20(1–8), 12.
Ramadhani, A. A. (2023). Potensi Keunggulan Kompetitif Sumber Daya Kelautan Indonesia. Jurnal Ekonomi Sakti (Jes), 12(3), 291–296. https://doi.org/https://doi.org/10.36272/jes.v12i3.296
Raman, V., Perumal, S., Navaratnam, S., & Fazilah, S. (2016). Computer Assisted Counter System for Larvae and Juvenile Fish in Malaysian Fishing Hatcheries by Machine Learning Approach. Journal of Computers, 11(5), 423–431. https://doi.org/10.17706/jcp.11.5.423-431
Salsabila, T., Indrawati, T., & Fitrie, R. A. (2024). Meningkatkan Efisiensi Pengambilan Keputusan Publik melalui Kecerdasan Buatan. Journal of Internet and Software Engineering. https://api.semanticscholar.org/CorpusID:269550330
Santone, A., Mercaldo, F., & Brunese, L. (2024). A Method for Real-Time Lung Nodule Instance Segmentation Using Deep Learning. Life, 14(9). https://doi.org/10.3390/life14091192
Simangunsong, C. R. O. (2024). Pengembangan Ekonomi Biru Dalam Sektor Kelautan Dan Perikanan Di Indonesia Yang Berfokus Pada Potensi Sumber Daya Laut Serta Ekspor Budidaya. Www.Researchgate.Net. https://www.researchgate.net/publication/384631329_PENGEMBANGAN_EKONOMI_BIRU_DALAM_SEKTOR_KELAUTAN_DAN_PERIKANAN_DI_INDONESIA_YANG_BERFOKUS_PADA_POTENSI_SUMBER_DAYA_LAUT_SERTA_EKSPOR_BUDIDAYA
Sinta, R. (2024). Blue Economy dan Dampak Industrialisasi terhadap Keberlanjutan Lingkungan. Www.Goodnewsfromindonesia.Id. https://unair.ac.id/blue-economy-dan-dampak-industrialisasi-terhadap-keberlanjutan-lingkungan/
Susetianingtias, D. T., Patriya, E., & Arianty, R. (2023). Combination of YOLOv3 Algorithm and Blob Detection Technique in Calculating Nile Tilapia Seeds. ILKOM Jurnal Ilmiah, 15(2), 317–325.
Suswadi, S. (2022). Pemberdayaan Petani Kecil melalui Pengembangan Pertanian Berkelanjutan. Pustaka Bintang.
Wang, C.-Y., Yeh, I.-H., & Liao, H.-Y. M. (2024). YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information.
Wasik, Z., & Gunawan, S. (2025). Ekonomi Biru menuju Indonesia Maju dari Potensi Tak Terbatas Lautan Nusantara. Unair.Ac.Id. https://www.goodnewsfromindonesia.id/2024/12/10/ekonomi-biru-menuju-indonesia-maju-dari-potensi-tak-terbatas-lautan-nusantara#google_vignette
WICAKSONO, M. (2019). Deteksi Dan Perhitungan Jumlah Larva Kepiting Rajungan Dengan Metode Object Detection.
Yaseen, M. (2024). What is YOLOv8: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector. 9.
Zakiyabarsi, F., Arizal, A., Nurul Puteri, A., Zulfajri S, A., & Syafaat, M. (2023). Zoea Crab Larva Counter (CLARCO) Based On Image Processing With Adaptive Gaussian Filter Algorithm And Blob Detection Technique. Inspiration: Jurnal Teknologi Informasi Dan Komunikasi, 13(1), 86–95. https://doi.org/10.35585/inspir.v13i1.48
Zakiyabarsi, F., Niswar, M., & Zainuddin, Z. (2019). Crab Larvae Counter Using Image Processing. 2(2), 127–131. https://doi.org/10.25042/epi-ije.082019.06
Zhang, L., Zhou, X., Li, B., Zhang, H., & Duan, Q. (2022). Automatic shrimp counting method using local images and lightweight YOLOv4. Biosystems Engineering, 220, 39–54. https://doi.org/https://doi.org/10.1016/j.biosystemseng.2022.05.011
Zhou, C., Yang, G., Sun, L., Wang, S., Song, W., & Guo, J. (2024). Counting, locating, and sizing of shrimp larvae based on density map regression. Aquaculture International, 32(3), 3147–3168. https://doi.org/10.1007/s10499-023-01316-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Furqan Zakiyabarsi, Rezty Amalia Aras, Yabes Dwi Nugroho H, Muhammad Muhaimin Nur, Dimas Aditya Alfarizi, Muhammad Ulil Amri

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.